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Abstract. In this work we discuss a diagrammatic method for studying the long-wavelength
magnetic excitation in an antiferromagnetic thin film. Although we examine this particular
system, the method is quite general. We pay special attention to the modes localized at the
surface in the absence of an applied static external field. Such modes are more symmetrical
and more stable. There are two main results from this work. First, we transform the boundary
condition into an abstract virtual potential which is used here to construct the Green’s function
for the elementary excitation in a film for a realistic situation. Second, we use such functions
to obtain the surface dispersion relations and the power spectra of the modes. Numerical
applications are demonstrated for MnF2 thin films.

1. Introduction

It is very common in physics for the boundary conditions and constraints to be separated
from the equations of motion. This way of thinking is desirable in most of the cases.
However, in certain circumstances we may be able to transform a boundary condition into a
potential; the great advantage of doing this is that one can then easily sum all contributions.
Here, we study this possibility for a very specific problem.

The modes that we will discuss here are those which result from the coupling between
the long-wavelength magnetic excitations and the electromagnetic field in an insulating
antiferromagnetic film. Surface modes of this kind were first investigated by Hartstein
et al [1] for semi-infinite ferromagnetic media. They found two different modes, one for
each propagation direction. Later, Karsono and Tilley [2] recovered the reciprocity for
finite geometry. Camley and Mills [3] and Fukuiet al [4] carried out ATR (attenuated
total reflection) studies for such modes. However, the investigations were concerned with
dispersion relations, and very little has been said about the stability of the modes. In previous
work [5, 6], we discussed the stability of the surface modes at the interface of a semi-infinite
ferromagnet and we concluded that only the main (lower) branch was stable [6]. There we
ensured the stability of the modes by requiring the power spectrum to be positive. Since
a particular excitation may not exist for given values of the frequency, wavevector, and
damping, it will appear in the power spectrum as zero or a negative number. Consequently,
it becomes obvious that it is not just the dispersion relations that are needed to reach a
conclusion as regards the stability of the modes: a full calculation of the power spectra
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is also essential. However, to obtain the power spectra, we need to compute a response
function, which in most cases is time consuming and onerous.

Recently [7], we formulated a method for constructing the Green’s function for a film
from the Green’s function of a semi-infinite medium. The main idea is to transform the
boundary condition at the interface into a virtual potential and, using diagrammatic methods
similar to those used in quantum field theory and many-body theory [8], to sum all of
the diagrams. Linear response theory has been used before for elementary excitations by
authors such as Dobrzynski [9], and Sarmento and Tilley [10].

Maradudin and Zierau [11] and Stamps and Camley [12] have constructed surface
response functions for antiferromagnets and applied them in a perturbation expansion for
rough surfaces.

The main difference between these methods and ours is the idea of using a boundary
condition as a virtual potential, which can be expanded in a series.

In section 2 we derive the Green’s functions for the semi-infinite medium. In section 3
we use the diagrammatic method to obtain the Green’s functions for the film, which are
then used in section 4 to obtain analytical results for the power spectra and to perform some
numerical applications for a MnF2 film at zero field. Our conclusions are in given section 5.

2. Semi-infinite antiferromagnets

In this section we discuss the Green’s functions for a semi-infinite antiferromagnet. For
future use, we shall define the geometry as that of figure 1. The media 1 and 3 are neutral;
they have no major effect on the magnetic excitations that we want to study. Medium 2
(0 < x < −L) is magnetic. For points close tox = 0, and for largeL, this system
may be seen as a semi-infinite one, for which the response function is simpler. From the
semi-infinite response functions, we obtain (section 3) the Green’s function for the thin film.

Since reciprocal propagation yields more stable modes, we expect also that modes which
are more symmetrical will be more stable. On the other hand, we know that magnetic modes
coupled with electromagnetic ones exist only over very narrow regions. Indeed, we shall see
in section 4 that the interval over which the modes are stable is considerably smaller than
that obtained from the usual definition of the dispersion relation. For the sake of simplicity,
we pay particular attention to the zero-field regime. In that case, the tensor permeability
µ(ω) is a diagonal even function of the frequencyω, given by

µ(ω) =
(
µxx 0 0

0 µxx 0
0 0 µzz

)
(1)

whereµzz = µ0 and

µxx = µ0

(
1+ 2ωmωa

ω2
0 − ω2

)
. (2)

Hereµ0 is the magnetic permeability of the vacuum, and

ω2
0 = ω2

a + 2ωaωe ωm = 4πγM ωa = γHA
whereHA is the anisotropic field, andωe the exchange frequencyωe = γHez, with Hez the
z-component of the exchange fieldHe. Usingε as the dielectric constant for medium 2, the
wavevectors for the elementary excitations are

q2
1 = q2

1x +Q2
y =

ω2

c2
(3)
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Figure 1. Basic diagrams for the elementary excitations in a film: (a) free propagation;
(b), (c) propagation involving only one surface; (d), (e) propagation involving two surfaces.

q2
2 = q2

2x +Q2
y = εµxx

ω2

c2
. (4)

Since the breaking of the translational symmetry of the excitations occurs only in the
x-direction, the wavevectorsQy are the same for the two media. As the excitations have
rotational symmetry in thezy-plane, we chooseQz = 0 without lost of generality. Medium 1
only causes the decay of the surface excitations, while the spectra of medium 2 also involve
volumetric excitations. We are now interested in obtaining the response of the magnetization
m(r) due to an external fieldh, which, for further use, is defined, in the long-range limit
[25], as

h(r, t) = h0ei(Q·r−ωt)δ(x − x ′).
From the wave equation of the magnetic field and the equations

m(r, t) = χhext (5)

Γ = 1

45
χ−1 =

(
0xx 0 0
0 0yy 0
0 0 0zz

)
(6)

we obtain the magnetization equation (see [6, 13] and references therein)

∇2(Γm(r))+∇(∇ ·m(r))+ εµ0ω
2

c2
(Γ+ I)m(r) = D(ω)h(r) (7)
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wherer is the Cartesian coordinate,I is the identity matrix, and

D(ω) = 1

4π

(
εµ0ω

2

c2
− q2

)
. (8)

Solving this equation by the Green’s function method [1, 7, 23, 24], we obtain

mα(r) =
∫
Gα,β(r, r

′)D(ω)hβ(r ′) dr ′ (9)

whereG(r, r ′) is the Green’s function. The Greek indicesα, β refer to the Cartesian
componentsx, y. The relevant direction is the ‘x’-direction. So, after some algebra, we
can cast the result in the compact form

Gαβ(x, x
′) = Aαβ

[
Bαβe−iq2x |x−x ′| + γ

+

γ−
ηαeiq2x (x+x ′)

]
(10)

where

γ± = q2x ± µxxq1x (11)

Aαβ = q2
2δαβ − q2αq2β

2q2xµxx
(12)

Bαβ = δα,β + (1− δα,β) sgn(x − x ′) (13)

sgn(x − x ′) =


1 x > x ′

−1 x < x ′

0 x = x ′
(14)

ηα =
{
−1 α = x
1 α = y.

(15)

The first term of equation (10) has translational symmetry, while the second, which
represents the surface contribution, does not. Although it has lost its translational symmetry,
the Green’s function has exchange symmetry forx ′ → x. We shall present a more detailed
discussion of the physics for the film Green’s function in section 4.

3. The diagrammatic method

We now turn our attention to the central part of this work. We will obtain the Green’s
function for the magnetic excitations in thin films.

For excitation propagation, the main information about the character of the surface
comes from the boundary conditions at the interfaces. Those conditions are frequently in
terms of the fields and not in terms of the potential. Consequently, it becomes difficult
to associate a Hamiltonian with simple phenomena, such as light or phonon reflection at a
boundary. However, we have pointed out [7] a situation where one may put the two concepts
together. Our starting point is observing that the number of components of a film Green’s
function is finite. Indeed, all five possible components are represented diagrammatically in
figure 1. In particular, observe figure 1(a) and figure 1(c) and their corresponding terms in
equation (10). For propagation which does not involve an interface, we shall consider the
free propagator

G0(x, x
′) = e−iq2x |x−x ′|. (16)
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We drop the polarization factorAα,β and the reference to Cartesian components, in view of
the fact that the procedure is the same for all of them. We associate with the interface 2–1
a potentialV1 and with the interface 2–3 the potentialV3. For our case withV1 = V3, we
retain bothV1 andV3 in order to make our diagrams clearer. With the free propagator and
the potentialsV1 andV3, we can construct all of the Green’s functions; for example

G1(x, x
′) = G0(x, 0)V1G0(0, x

′) = V1eiq2x (x+x ′). (17)

Equation (17) reproduces the second term of equation (10) with

V1 = γ+

γ−
. (18)

All of the diagrams of figure 1 can be obtained in the same way. The full Green’s
function for the elementary excitations in the film is the sum of all possible propagations
going fromx ′ to x, so we have

G(x, x ′) = G0(x, x
′)+G0(x, 0)V1G0(0, x

′)+G0(x, 0)V1G0(0,−L)V3G0(−L, x ′)
+ G0(x, 0)V1G0(0,−L)V3G0(−L, 0)V1G0(0, x

′)+ · · ·
+ G0(x,−L)V3G0(−L, x ′)+G0(x,−L)V3G0(−L, 0)V1G0(−L, x ′)
+ G0(x,−L)V3G0(−L, 0)V1G0(0,−L)V3G0(−L, x ′)+ · · · . (19)

Figure 2. Feynman diagrams for the elementary excitations in thin film. The virtual potentials
V1 andV3 are summed to all orders of interaction.

These contributions are represented diagrammatically in figure 2. Observe that a double-
reflection propagation which returns to the same point will produce the factor

p = G0(x, 0)V1G0(0,−L)V3G0(−L, x) = V1V3e−2iq2xL (20)

which is just a constant. This means that it does not depend on the position. To extend our
analogy with the diagrammatic methods in many-body theory, we define the generalized
dielectric constant as the inverse of the sum of all possible closed trajectories; thus

6(Qy, ω) = (1+ p + p2+ · · ·)−1 = 1− V1V3e−2iq2xL. (21)

Consequently, equation (19) becomes

G(x, x ′) = G0+ (G1+G3+G13+G31)/6(Qy, ω). (22)

Finally, the last result with the proper polarization may be cast in the form

Gαβ(x, x
′) = q2

2δα,β − q2αq2β

2q2xµxx

[
Bαβe−iq2x |x−x ′|

+ 1−1γ−[γ+(ηαeiq2x (x+x ′) + ηβe−iq2x (2L+x+x ′))

+ γ−(eiq2x (x−x ′−2L) + ηαηβeiq2x (x
′−x−2L))]

]
(23)
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with

1 = (γ−)26(Qy, ω). (24)

We observe that the full Green’s function is the sum of the bare Green’s functions
represented in figure 1 divided by the function6(Qy, ω). So, the sum of all closed traj-
ectories has the same screening effect as in an electron gas [8, 15, 16] where a bare potential
1/r may end up as the screened potential e−qr/r, for example.

Equation (23) was obtained in a very general way using the information from equation
(18) and free-propagator equation (16); no more information is needed. Although we are
concerned here with retarded magnetic excitations, the results are not restricted to any
particular type of excitation. These results have two main consequences: first, they avoid
a large part of the calculations on going from a single interface to a film, i.e., from the
knowledge of equation (18) we write down equation (23) immediately; second, they show
up the similarity, mainly as regards the wave character, between many kinds of different
excitation such as magnons, phonons, excitons, polarons, and polaritons. This latter result
may be obtained from the poles of our Green’s functions or from the zeros of our generalized
dielectric function6(Qy, ω).

Figure 3. Dispersion relations for the surface modes in MnF2. Here the frequencies are in units
of the bulk magnon frequencyω0, the wavevector is in units ofK0 = c/ω0, and the length is
in units of L0 = K−1

0 . Curve (a) is the mode forL → ∞. Curve (b) is the lower mode for
L = 0.1. Curve (c) is the highest mode forL = 0.1.

The first benefit of our method is that we obtain the dispersion relation equation (24);
it may be obtained by using different methods, but the result that we have presented here is
more elegant, simple, and efficient. Considering medium 1 and 3 as identical, equation (24)
yields for the surface modes (q2x = −iα, α > 0, q1x = iβ, β > 0)

q1xµxx = q2x tanh(iq2xL/2) (25)

and

q1xµxx = q2x coth(iq2xL/2). (26)

Equations (25) and (26) represent modes with high and low energy, relative to the single
interface. They have even and odd symmetry with respect to a central plane in medium 2;
see equation (23). Equations (25) and (26) are similar to those for the ground state and
the first excited state of a quantum system, and reflect the wave character of the modes.
These characteristics have been pointed out for phonons [14, 17, 18] and magnetic modes
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[6, 13, 19, 20]. For realq2x , we also obtained the guide modes [21]. ForL → ∞, the
interaction between the surfaces becomes negligible, and equation (25) and equation (26)
coalesce to the same form:γ− = 0. In this limit, equation (25) and equation (26) reduce
to

Q2
y =

µxxω
2(ε − µxx)

c2(1− µ2
xx)

. (27)

In figure 3 we plot the dispersion relation for an unsupported MnF2 film. The frequencies
are given in units ofω0 = 93.3, while the wavenumber is given in units ofK0 = ω0/c and
the length in units ofL0 = K−1

0 . We use the parametersωa = 7.54 kOe,ωm = 7.85 kOe,
ωe = 550 kOe,L0 = 91 µm. However, since our frequencies are given in relative units,
the forms of the graphs are not affected by a ‘bad’ measure of those parameters. Curve (a)
is for L → ∞; curves (b) and (c) are forL = 0.1. Curve (b) represents the low-mode
equation (26), while curve (c), equation (25), represents the high-mode equation. Observe
that forQy →∞ (e−iq2xL→ 0), all of the curves converge to the same value:

ωs =
√

2ωmωaµ0/(1+ µ0)+ ω2
0 = 1.0036.

We noticed that the splittings of the modes are similar to those of two hydrogen atoms put
together, where a single level is split into two orbitals with even and odd spatial symmetry.

4. Power spectra

Now we turn our attention to the study of the power spectra of the magnetic modes. The
dispersion relation gives us the primary information about the modes. However, it is not
sufficient to describe them. We will define the region of the positive power spectrum as
stable. Before we present the results, we first put the calculations in context by discussing
the nature of the Green’s functions that we have just obtained. The dispersion relation
obtained in the last section could easily be obtained by using other methods [2, 5, 13, 18,
22–25], but this is not true of the Green’s functions. Using the methods developed here,
we reproduce various Green’s functions obtained in the literature by direct calculation.
In this way we get results for acoustic phonons [18], phonon–polaritons [14], phonon–
excitons [25], surface magnetostatic modes in ferromagnets [19], antiferromagnets in the
exchange-dominated regime [20], and retarded magnons in both ferromagnetic [13] and
antiferromagnetic [6] systems.

The Green’s function equation (23) was built up in such way as to obey the symmetry
G(x, x ′) = G(x ′, x). However, once the proper polarization is introduced into equation
(23), the resulting equations for all of the componentsGα,β obey

Gα,β(x, x
′) = πα,βGβ,α(x

′, x) (28)

as required by time-reversal symmetry [22]. Hereπαα = 1, and the off-diagonal termπα,β
assumes the following values: 1, for variables which do not change sign under time reversal;
and−1, for variables which do change sign [22]. We lose the translational symmetry, but,
on the other hand, there is an exchange symmetry, i.e., the Green’s function is no longer
a function of |x − x ′|, but, for x and x ′ in the same medium,Gαβ(x, x

′) is invariant
under the exchange ofx and x ′. This symmetry for thin films was observed by Loudon
[18] for the phonon case, and demonstrated in [22] for a general case. The proof uses
two basic arguments: linear response theory and time-reversal symmetry. On the other
hand, the diagrammatic procedure developed here shows symmetry by direct construction.
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This symmetry is very important in the discussion of some experiments—such as when
considering selection rules for light scattering (see [22] and references therein).

For x and x ′ in different media, the symmetry relations (28) do not hold in a simple
way. The reason for this is clear: on moving from one medium to another, the changes
are no longer linear. Thus, the susceptibility, the dielectric constant, and the wavevector,
change abruptly. Consequently, not all trajectories going from one medium to another are
reversible; there may be instabilities and forbidden regions. The simplest example is as
follows: one may always shine a ray of light from air onto water; however, the reverse
procedure is not always possible, since total reflection may occur. For that prohibited region,
the power spectrum will involve negative numbers.

Figure 4. The maximum of the power spectrum as a function of the resonance frequenciesω.
P(ω, q(ω)) is a function ofω, andL = 0.1.

Now that our Green’s function is well defined, the power spectra may be readily obtained
by using the fluctuation-dissipation theorem [6, 14]:

P(ω,Qy, x) = h̄

π
(n(ω)+ 1) Im[Gxx(x, x

′)+Gyy(x, x
′)]
∣∣
x=x ′ (29)

with n(ω) as the Bose–Einstein factor. As we are considering zero static external field, the
x- andy-modes are not coupled. Thus the power spectra of the excitations depend only on
Gxx andGyy . Equation (29) gives a full description of the power spectrum as a function
of ω, Qy , andx. We take the dissipation into account by makingω = ω + i0 (0 � ω0)

in equation (29). Choosing for everyω the formω = ω(Qy), we get the maximum of the
power spectrum in terms ofω. We get the maximum energy possible for all of the points
of a dispersion relation, similar to that of figure 3. In figure 4 we plot the maximum of the
power spectrum as a function ofω = ω(Qy). We useL = 0.1, and the dispersion relation
of curve (b) of figure 3. We usex = 0, so we are at the interface 1–2. Similar results
hold for the interface 2–3. We notice that the real modes are confined to a region smaller
than that defined by the dispersion relation. Since we are working here with the maximum
allowed power spectrum, we can see that there are no modes outside this range. That is,
they are unstable outside of this region.

In figure 5 we plot the power spectrum as a function ofQy . We selectω = 1.0019
(which corresponds to the maximum value ofP from figure 4). This is a more common
experimental situation, where, for example, one has a fixed source of light and changesQy

by changing the scattering angle. Figure 5 shows a very large value ofP forQy ≈ 8 which is
a very active polariton region—i.e., the region where these modes are most probably found.
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Figure 5. The power spectrum as a function ofQy . We useω = 1.0019 andL = 0.1. For a
very thin film the first peak is far away from the second one, and lies outside our range.

Figure 6. The power spectrum as a function ofQy . Hereω = 1.002. The curves are for the
following values: (a) L = 0.5; (b) L = 0.75; (c) L = 0.98; (d) L = 1.2. The background is
given by the straight part of the spectrum. We notice that asL increases, the modes converge
to a single one.

In figure 6 we plot the power spectrum as a function of the wavenumberQy , for various
thickness of the film. Here, also,x = 0 andω = 1.002. The curves are for the following
values: (a) L = 0.5; (b) L = 0.75; (c) L = 0.98; (d) L = 1.2. The interference between
the modes of the two surfaces depends on the film thicknessL. For small values ofL, their
splitting into two bands is clear. As the film thickness increases, the difference between the
modes becomes negligible.

In figure 7 and figure 8 we plot power spectra as functions of the distance to the
surface. In figure 7 we have the surface modes in a thin film withL = 0.1. HereQy = 6
andω = 1.001. This corresponds to a situation where the surface energy is quite high,
and decreases as one moves from the interface to the film. Finally, in figure 8 we have
Qy = 7.5 andω = 0.9986, which corresponds toµ ≈ 22, and, consequently, to the region
of the volume-localized (guided) modes. The film has thicknessL = 5, which is larger than
the mode wavelength. We see oscillations in the power spectrum. These oscillations decay
as we get deeper into the film.
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Figure 7. The power spectrum as a function of the distance to the surface for a thin film. Here
L = 0.1, Qy = 6, ω = 1.00135− curve (b) of figure 3. We observe that in the middle of the
film, P is at its minimum.

Figure 8. The power spectrum of the volume-localized (guide) modes, as a function of the
distance to the surface for a thick film. HereL = 5, Qy = 7.5, ω = 0.9986. The oscillatory
character due to the surface decays into the volume. The surfaces induce oscillations similar to
those of a point charge in an electron gas (Friedel oscillations).

5. Conclusions

In summary, we have used a very simple procedure to build up the Green’s functions for the
elementary magnetic excitations in thin films, starting from those of a single interface. The
main idea is to transform the boundary condition into a virtual potential, and to associate
it with the single-surface propagator, so that we can make a diagrammatic expansion. The
final Green’s functions are the bare Green’s functions for a simple propagator (that is, ones
whose trajectories going fromx ′ to x do not include closed trajectories), screened by a
generalized dielectric functionσ(Qy, ω). The generalized dielectric function is the inverse
of the sum of all of the closed trajectories. So, the resulting Green’s functions can be seen
as the sum of the ‘dressed’ (the bare ones divided byσ ) Green’s functions. This process is
analogous with the screening process in electron gas [8, 15, 16].

We verified that the Green’s function obtained by our method agrees with some results
found in the literature obtained by direct calculations. The Green’s functions also have
an exchange symmetry. With the Green’s functions, we obtain the dispersion relation and
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the power spectra. We demonstrated specific applications to MnF2 film at zero field. This
crystalline film has the advantage of being easily found in most of laboratories investigating
magnetism.

The question remains of how one can possibly obtain negative numbers for the power
spectrum, which should only have positive values. Putting this another way, we are asking
in what sense equation (29) is different from the following density of states:

ρ(E) =
∑
i

δ(E − Ei). (30)

Here,Ei is the energy of the statei. We are not going to give a final answer to this question.
However, we shall point out the main differences. Equation (29) is far more complex
than equation (30). It requires the existence of thermal excitations distributed among the
accessible states. Also, the system must be close to equilibrium, and the response must
be linear. These are far more restrictive conditions than those that apply to equation (30).
Being far from equilibrium means being far from the region of existence of stable modes,
and we cannot apply the fluctuation-dissipation theorem without equation (29) having to be
modified. So, getting a negative power spectrum indicates that such excitations should not
exist in that region—that is, they are unstable.

This diagrammatic method may be applied to different kinds of excitation and different
problems of surface science. We think it highly likely that similar processes could be used
in different areas of physics. We hope that this work will constitute a first step in the
direction of more general and simple methods. An attempt to generalize this result in order
to include complex layered structures and surface disorder is being made.
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